HRS –Biomarkers and Genetics

Eileen Crimmins, **Jessica Faul**, Ken Langa, Bharat Thyagarajan & David Weir HRS International Network Meeting August 2023

Venous Blood Collection in the HRS

- Verbal consent at the end of the core survey (Tel, FTF and Web)
- Blood draw contracted to national phlebotomy contractor (Hooper Homes, ExamOne)
 - Scheduled and conducted separate in-home visit for blood collection
 - Attempt as soon as possible after the core interview
 - Results from 28 assays returned to respondents within 2 weeks of collection
- Project collected venous blood from all panel HRS respondents in 2016
 - 79% consented and 83% who consented completed (N=9,934)
- 2018 re-ask of the 2016 respondents who did not consent and first ask of the new cohort enrolled in 2016
 - N=3,089 (completed)
- Collection again in 2022 sample is a follow-up on the 2016 sample, first draw on prior non-consenters
 - Current consent is 74.9%, some effects on broken appointments and supply availability due to the pandemic
- Steady state plan is one draw per respondent per 6 year cycle

VBS Assays

Panel Sample N= 9,934	Innovative Sample
	N=4,104

Comprehensive Metabolic Panel

Lipid Panel

Complete Blood Count (CBC)

Ferritin (FRTN)

IGF-1

DHEA-S

Cystatin C

Vitamin D (25 Hydroxy)

High sensitivity CRP (hsCRP)

Cytokines (IL-6, IL-10, IL-1RA, sTNFR-I, TGF- ß1 (activated form))

Flow cytometry (cryopreserved cells)

CMV seroprevalence

B-type natriuretic peptide (NT-proBNP)

- 1) Traditional biochemical /harmonized marker
- 2) Immune system and inflammation marker
- 3) Innovative aging marker

DNA Methylation
Homocysteine
Telomere length
RNA-seq
mtDNA copy number
Clusterin
BDNF

DNA Methylation

- DNA methylation is one of several epigenetic mechanisms that cells use to control gene expression
- N=4,018 (innovative subsample from 2016)
- Several tools are coming online now to use methylation data in exciting new ways such as to estimate cell distribution, biological age, ancestry, etc.
- Interesting potential longitudinally
- QC'd beta matrix data uploaded to the National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) – 19 GB
- Full iDAT files will also be released via NIAGADS (500 GB)
- 13 Epigenetic clocks already released from HRS
- Longitudinal DNA methylation at Time 2 being collected (2022)

RNAseq

- Another approach to Gene Expression
- Research on smaller and younger samples shows strong effects of social, behavioral, economic, psychological factors on gene expression
- Population variability is not well known (e.g. race/ethnic differences)
 - Our sample will be valuable and unique in demonstrating variability in gene expression
- RNA sequencing assays (single end 50 bp reads ~90 million reads/sample)
- N=3,749 (innovative subsample from 2016, overlap with DNAm)
- Characterized ~50,000 transcripts, identified by Ensembl IDs
- Transcript abundance matrix (not identifiable) is being prepared as a "HRS Sensitive Health" product
- Compressed fastq files will be uploaded to NIAGADS

HCAP Pilot Assays of Neurodegeneration

- HRS conducted a pilot to test promising biomarkers of neurodegeneration.
 Priorities:
 - (1) highly reliable and replicable in blood (plasma/serum);
 - (2) have validated correlations with AD/ADRD neuropathology from cerebrospinal fluid (CSF) or autopsy measures;
 - (3) are found in higher concentrations in people with cognitive impairment and AD/ADRD;
- Final list based on consultation with dementia experts at the NIA Intramural Research Program
- Using samples from the 2016 collection we assayed:
 - Aβ40/Aβ40 ratio
 - Phosphorylated Tau Protein 181 (pTau181)
 - Neurofilament Light Chain (NfL)
 - Glial Fibrillary Acidic Protein (GFAP)
 - Olink Proteomics Neurology Panel
- N=4,469 respondents (overlaps up with innovative sample DNAm, RNA)
- Data forthcoming from HRS website

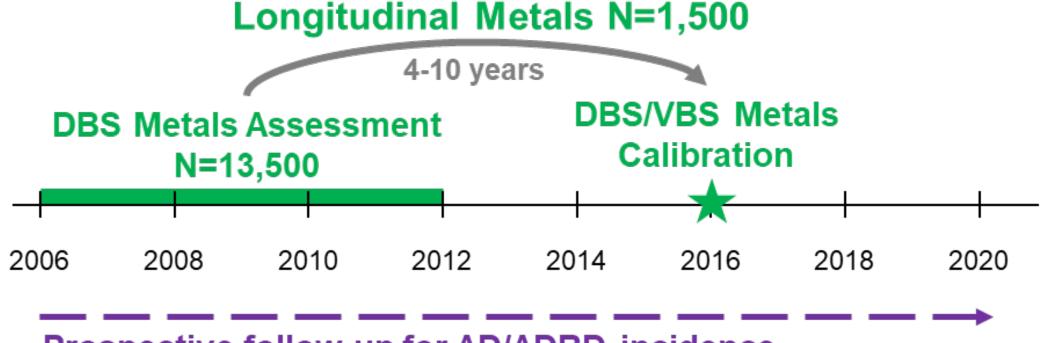
HCAP Pilot – Predicting Incident Dementia and Mortality

Multinomial logistic regressions of Dementia/Death status in 2018, n=3923

	Dementia Onset in 2018 (OR)	Death in 2 years (OR)
zNfL	1.27**	1.38***
zGFAP	1.17	0.96
zAB42/40*100	1.01	0.91
zpTau181	1.01	0.80**

Multinomial logistic regressions of Dementia/Death status in 2020, n=3911

	Dementia Onset in 2020 (OR)	Death in 4 years (OR)
zNfL	1.56***	1.58***
zGFAP	1.06	0.97
zAB42/40*100	1.10	0.74**
zpTau181	0.90	1.14**


Age and gender controlled, ***p<.001, **p<.01, *0<.05

HRS Heavy Metals ADRD Exposome Supplement

- Environmental exposures like **heavy metals** are of interest as contextual factors contributing to Alzheimer's disease and related dementias due to known neurotoxic effects and ability to cross the blood-brain-barrier
- Environmental hazards are prevalent and exposure levels often co-vary spatially with socioeconomic status and race/ethnicity
- Heavy metals (**lead, cadmium, mercury and arsenic**) measured in capillary DBS using energy-dispersive X-ray fluorescence (EDXRF)
 - Non-destructive approach
- N=15,000
- HRS will be one of the largest, representative and racially diverse datasets of individual-level heavy metals concentrations linkable to cognitive outcomes, social conditions, and health variables

HRS Metals Measurement

Prospective follow-up for AD/ADRD incidence

Existing data follow-up: minimum 8 years, maximum 14 years

HRS Genotype Data

2006-2008

Version 1 - 12,500+ samples (dbGaP)

 Posting includes measured SNPs and imputations using 1000 Genomes reference panel (22 million SNPs)

2006-2012

Version 3 - 19,000+ samples (NIAGADS)

- Additional expansion of minority sample
- Includes imputation to Haplotype Reference Consortium

Version 2 - 15,600+ samples (dbGaP)

- 1000 Genomes imputation (22 million SNPs)
- KING-robust Relationship Matrix

2006-2010

Version 4 – 22,000+ samples forthcoming NIAGADS

Includes (near) complete coverage of the VBS 2016 sample

2006-2016

Polygenic Score (PGS) Data

- Public data files released by HRS
- PGS 4th release (Feb 2021) 2006-2012 samples
 - Over 50 different scores on a variety of behaviors and traits
- Additional files released as user contributions (SSGAC consortium, including the <u>SSGAC Polygenic Index (PGI) Repository</u>)
- PGSs are released for both the European ancestry and African ancestry groups, separately
 - Ancestry-specific Principal Components 1-10 are included (masked)
- PGS 5th release planned for Fall 2023
 - Will include newer AD scores and scores for Hispanic participants (n=2,381)

APOE and Serotonin Transporter Alleles

N=19,000 (same Rs with genotyping)

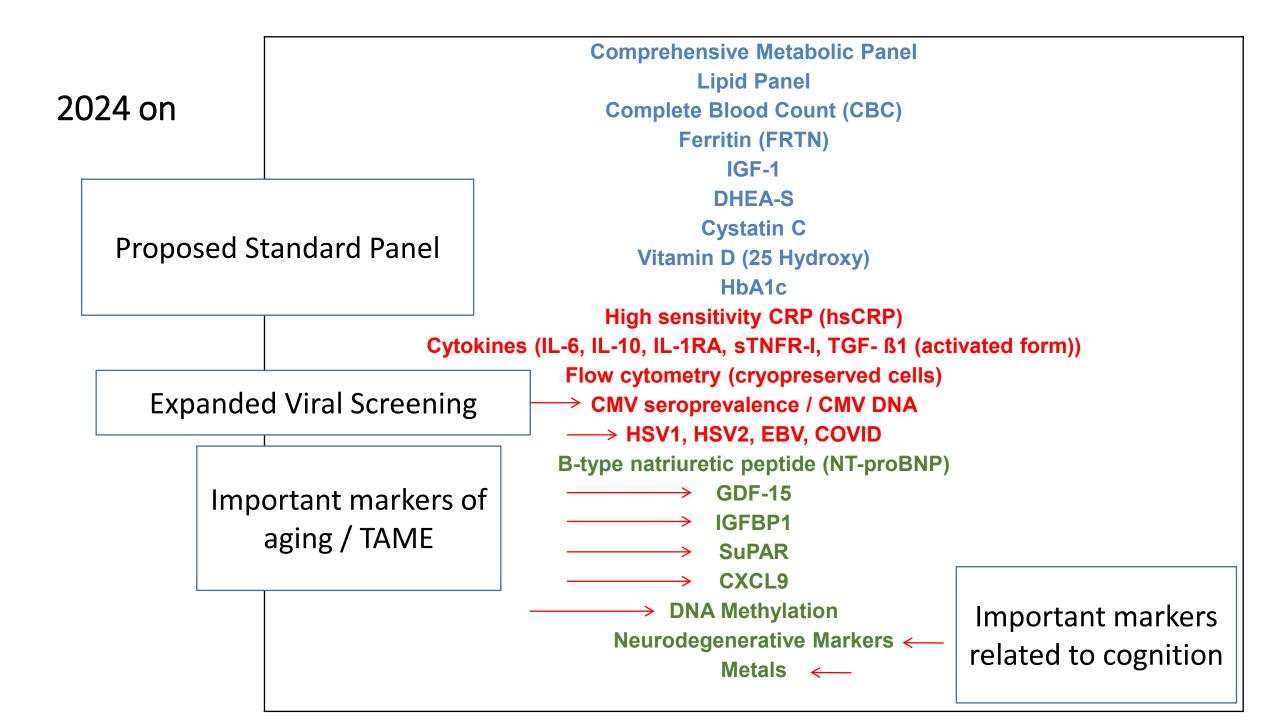
APOE4 Genotyping (2 SNPs)

Taqman assays to test for the two SNPs

5'-HTTLPR L/S Genotyping

The repeat-length polymorphism (long or short genotype) within the promoter region of 5-HTTLPR

Performed by Johns Hopkins University (CIDR)



HRS Data Product and posted on NIAGADS

Venous Blood Collection in the HRS – Renewal Approach

• Aims:

- Proposed collection includes the markers from 2016 that have proven to be important predictors of cognition, aging phenotypes, and mortality
- Cognitive / neurological assays
- Biomarkers that help explain inequalities
- Relate to contextual data
- COVID-related long-term health
- Play to the strengths of the HRS:
 - Longitudinal collection
 - Nationally representative sample with oversamples of underrepresented groups
 - Well-characterized for ADRD and aging phenotypes

Establishing a Public Bio Repository of Aging

- Intentionally set aside 0.5mL of serum and 0.5mL of plasma, as well as up to 10 micrograms (10ug) of venous blood DNA to make available for outside researchers
- Researchers will be able to apply for access to these samples own funding required
- Will help fill the discovery research space between identification of a biomarker and uptake at HRS-type scope

THANK YOU

https://hrs.isr.umich.edu